Sustainable forest management – canopy biology

SustainNET Seminar 2021

Anne Oxbrough & Sven Batke

"Overhead, at a height, perhaps, of a hundred feet, is an almost unbroken canopy of foliage formed by the meeting together of these great trees and their interlacing branches; and this canopy is usually so dense that but an indistinct glimmer of the sky is to be seen, and even the intense tropical sunlight only penetrates to the ground subdued and broken up into scattered fragments... it is a world in which man seems an intruder, and where he feels overwhelmed."

Alfred R. Wallace (1878)

Why sample the canopy?

- 1) High species diversity
- 2) Highly physiologically active
- 3) Contribution to global cycles
- 4) Incredible complex ecology
- 5) Important to us!

Gatti et al. (2017)

...increased volume and structural complexity.

Impact of plant life on other species...an example

Edred John Henry Corner, 1906-1996

- A very controversial biologists
- He taught botany in King Edward College, Singapore
- Training macaque monkeys

Royal Society by David Mabberley (2000)

Radeau des Cimes designed by Hallé (1991)

Pioneered by Alan Smith (1990) in Panama!

- Currently there are 11(12) cranes active
- Running costs = 1-5 million USD

'*Reaching the rainforest roof*' by Mitchell (1982)

Access is not always necessary...

Life-form divisions:

- a) holo- and hemi-epiphytes
- b) Stranglers
- c) nomadic vines
- d) Climbers
- e) hemi-parasites

Life-form divisions:

- a) holo- and hemi-epiphytes
- b) Stranglers
- c) nomadic vines
- d) Climbers
- e) hemi-parasites

Life-form divisions:

- a) holo- and hemi-epiphytes
- b) Stranglers
- c) nomadic vines
- d) Climbers
- e) hemi-parasites

Life-form divisions:

- a) holo- and hemi-epiphytes
- b) Stranglers
- c) nomadic vines
- d) Climbers
- e) hemi-parasites

Anthurium schlechtendalii

Monstera deliciosa

Philodendron bipinnatifidum Brazil, plant 30 meters up in the canopy

Life-form divisions:

- a) holo- and hemi-epiphytes
- b) Stranglers
- c) nomadic vines
- d) Climbers
- e) hemi-parasites

Mikania (Asteraceae)

Oreopanax (Araliaceae)

Passiflora

Life-form divisions:

- a) holo- and hemi-epiphytes
- b) Stranglers
- c) nomadic vines
- d) Climbers
- e) hemi-parasites

Santalum (Santalaceae)

Struthanthus (Loranthaceae)

EpIG (<u>https://epigdatabase.weebly.com/</u>)

- First epiphyte workshop in Marburg 2018
- 27 participants
- 11 countries
- Highly detailed survey data
- Focus on the Neotropics

Acuña-Tarazona Margoth	Instituto de Ecología A.C.	Mexico
Batke Sven	Edge Hill University	UK
Benavides Ana Maria	Fundación Jardín Botánico de Medellín	Colombia
Boelter Carlos	Instituto Nacional de Pesquisas da Amazônia	Brazil
de la Rosa Manzano Edilia	Autonomous University of Tamaulipas	Mexico
Einzmann Helena	University of Oldenburg	Germany
Guzman Valeria	Goettingen University	Germany
Hietz Peter	University of natural resources and life sciences Vienna	Austria
Irume Mariana Victória	Instituto Nacional de Pesquisas da Amazônia	Brazil
Jímenez-Alfaro Borja	University of Oviedo	Spain
Kessler Michael	University of Zurich	Switzerland
Kreft Holger	Goettingen University	Germany
Kromer Thorsten	Universidad Veracruzana	Mexico
Linares-Palomino Reynaldo	Smithsonian Institution	Peru
López Jiménez Derio Antonio	Centro del Cambio Global y la sustentabilidad (CCGS)	Mexico
Martínez-Meléndez Nayely	El Colegio de la Frontera Sur (ECOSUR)	Mexico
Mendieta-Leiva Glenda	Phillips Marburg University	Germany
Costa Quaresma Adriano	Instituto Nacional de Pesquisas da Amazônia	Brazil
Nunes Ramos Flavio	Universidade Federal de Alfenas	Brazil
Soto Medina Edier Alberto	Universidad del Valle	Colombia
Taylor Amanda	Goettingen University	Germany
Wagner Katrin	University of Oldenburg	Germany
Weigelt Patrick	Goettingen University	Germany
Werner Florian A.	Gesellschaft für Internationale Zusammenarbeit (GIZ)	Guatemala
Wolf Jan	Univesity of Amsterdam	Netherlands
Zartman Charles E.	Instituto Nacional de Pesquisas da Amazônia	Brazil
Zotz Gerhard	University of Oldenburg	Germany
Zuleta Daniel	Universidad Nacional de Colombia	Colombia

EpIG – Epiphyte Inventory Group

Epiphyte distributions (vascular species only!)

REPORT

Journal of Vegetation Science

EpIG-DB: A database of vascular epiphyte assemblages in the Neotropics

Glenda Mendieta-Leiva^{1,2} | Flavio N. Ramos³ | João P. C. Elias³ | Gerhard Zotz^{4,5} | Margoth Acuña-Tarazona⁶ | Francine Seehaber Alvim⁷ | Daniel E. F. Barbosa⁷ | Geicilaine A. Basílio⁸ | Sven P. Batke⁹ | Ana María Benavides¹⁰ | Christopher T. Blum¹¹ | Carlos R. Boelter¹² | Pedro H. S. Brancalion¹³ | María Judith Carmona¹⁴ | Luciana P. Carvalho⁷ | Edilia de la Rosa-Manzano¹⁵ | Helena J. R. Einzmann⁴ | Manuel Fernández¹⁶ | Samyra G. Furtado⁷ | André L. de Gasper¹⁷ | Valeria Guzmán-Jacob¹⁸ Peter Hietz¹⁹ | Mariana V. Irume¹² | Derio Antonio Jiménez-López²⁰ | Michael Kessler²¹ | Holger Kreft^{18,22} | Thorsten Krömer²³ | Giesta Maria O. Machado¹⁷ | Nayely Martínez-Meléndez²⁰ | Pedro Luiz S. S. Martins⁷ | Rodrigo de Macêdo Mello²⁴ | Alex F. Mendes¹³ | Luiz Menini Neto⁷ | Sara R. Mortara^{25,26} | Camila Nardy³ | Rodolfo de Paula Oliveira^{4,27} | Ana Clara A. Pereira⁷ | Luis Pillaca²⁸ | Adriano C. Ouaresma²⁹ | Calixto Rodríguez Ouiel³⁰ | Edier Soto Medina³¹ | |

Nowhere to escape – Diversity and community composition of ferns and lycophytes along the highest mountain in Honduras

Johan Reyes-Chávez^{1,2}, Megan Quail², Stephanie Tarvin² and Sven P. Batke^{1,2*}

Climate Change projections 1.5°C increase scenario = loss of >50% of the geographic range of 8% of plant species by 2030

Legend NE Sample plots Celaque National parl Altitude (m) High : 2725 Low: 1089 2 Kilometers

Hot of the press! J. Trop. Ecol.

Its getting hot up here!

Some results...

- 160 species (epiphytes and terrestrial)
- 63 are expected by 2050 to shift their range fully or partially above the max. altitude of the mountain

Sustainable forest management – canopy biology

SustainNET Seminar 2021

Anne Oxbrough and Sven Bakte Part 2

Pre-1992 forest management approach

Sustainable forest management

Economic Social Environmental

Sustainable forest management – WHO CARES?

Biodiversity & Ecosystem functioning Health Resilience

FUTURE GENERATIONS

Sustainability

Forest Ecology and Management 314 (2014) 172-182

Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Commercial spruce plantations support a limited canopy fauna: Evidence from a multi taxa comparison of native and plantation forests

Scott M. Pedley^a, Rebecca D. Martin^a, Anne Oxbrough^b, Sandra Irwin^a, Thomas C. Kelly^a, John O'Halloran^{a,*}

^a School of Biology, Earth and Environmental Science, University College Cork, Cork, Ireland ^b Department of Biology, Biosciences Building, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK

Forest cover in Ireland

Semi natural native woodlands

- Cover 1% land area (10% of all forest)
- Small patches (70% <10ha)
- Oak Ash Birch Holly Hazel
- Yew, juniper, Scots pine?

Afforestation

- Non native species
- Monocultures
- 14.5% by 2030

Typical forests

- Sitka spruce (60%)
- Norway spruce
- Larch
- Lodgepole pine
- 40-50 year rotation
- Thinned ~20-25 yrs
- Clear cut

Key Questions

- 1. Do plantations support canopy invertebrate assemblages similar to native forests?
- 2. Does the canopy fauna in second rotations plantation support more forest specialists than first rotations?

Experimental Design

- Thirty closed-canopy forests:
 - Six ash (*Fraxinus excelsior*) dominated semi-natural woodlands
 - Six oak (*Quercus petraea*) dominated seminatural woodlands
 - Six closed canopy (20–50 years old) first rotation Sitka spruce (*Picea sitchensis*) plantations
 - Six second rotation Sitka spruce plantations
 - Six Norway spruce (*Picea abies*) first rotation plantations.

Canopy fogging

- A natural pyrethroid (Pybuthrin 33)
 - non-persistent
 - no phytotoxic effects
 - not harmful to vertebrates
- 6-10 minutes, full coverage
- Away from water courses
- Low wind (< 8 km h-1), dry canopy
- After a dry, calm night to minimise fog dispersion.

Results

- 1155 beetles individuals
- 1340 spiders individuals
- 144 species were recorded
- 42 (18 spiders and 24 beetles) were unique to plantation
- 59 (13 spiders and 46 beetles) were unique to woodlands.
- 142 000 Diptera and Hemiptera in 71 families.

Diptera and Hemiptera

NMDS1

Case Study: Key findings

- Plantations vs native semi natural woodlands
 - ~half the number of beetle species
 - ~ half the number of Diptera and Hemiptera families
- Norway spruce plantations:
 - different to those of native forest
 - consistently higher richness than Sitka spruce plantations.
- No differences between first rotation and second rotation Sitka spruce plantations.
- Sitka spruce plantations contained far greater total abundance of invertebrates, due to vast numbers of aphids and midges.

Case Study: Implications for Management

- Sitka spruce are of limited benefit to the canopy fauna typical of native forests
- Large aphid populations
 - May provide abundant food for insectivores
 - May also lead to reduced crop production through defoliation.
- Progressive forestry management:
 - diversify the plantation canopy fauna
 - may also increase productivity and resilience to pest species.

Thanks

